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Gauge Invariance of the Euler-Lagrange Expressions 
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We prove, for a Lagrangian density L(gg; A~; A~j), that the gauge invariance of 
the Euler-Lagrange expressions E~(L) implies the existence of a gauge-invariant 
scalar density L1 such that E~(L)= E~(LO. We then prove the uniqueness of the 
Yang-Mills field equations. 

1. INTRODUCTION 

The Yang-Mills equations for a gauge field 

B~flFJSU[j  (1) 

where 

F o. - A~, i - Ai, j ~- C ~ y A  fli A I (2 )  

AT are the gauge potentials of a connection in a principal fiber bundle, and 
C~r are the structure constants [see Kobayashi and Nomizu (1963) and 
Noriega and Schifini (1985) for definitions and notations; see also Bleecker 
(1981)], can be obtained through the use of a variational principle as follows. 
For 

L = L ( g i j  ; a . ,~ A i  , A i , j )  (3) 

the Euler-Lagrange expressions are 

0A~ ~3x j (4) 
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If we consider 

Lo = B~[3F~~ (5) 

then E~(L)=0 is equivalent to (1). 
The equations (!) are gauge invariant, i.e., they do not change for 

another choice of gauge because of the transformation law 

F'~alj- (Ad~o qt-1)F/3~ 

for a change of gauge ~. Also, Lo is gauge invariant, but while the gauge 
invariance of the field equations is mandatory, it is not so for the Lagrangian, 
because it usually has no physical meaning. 

In this paper we study how the gauge invariance of the Euler-Lagrange 
expressions E~(L) affects the possible gauge invariance of the Lagrangian 
L. In particular, we prove that, under the hypothesis of E~(L) being gauge 
invariant for some Lagrangian density L of the type (3), there exists a gauge- 
invariant Lagrangian density L1 such that E~(L)=E~(L1). This restricts 
severely the possible field equations, and we will see that the complete set of 
field equations leads to Yang-Mills equations, thus proving its uniqueness. 

In a previous paper (L6pez et al., 1989) this same result was obtained 
under the additional hypothesis of the gauge invariance of the contribution 
to the energy-momentum tensor given by L, i.e., ~L/Og o, in the context of 
a minimal coupling with gravitation. Since the difficulties of making general 
relativity and quantum theory compatible are well known, it seems desirable 
to obtain the above-mentioned uniqueness of the Yang-Mills equations 
without any reference to gravitation, and this is what we achieve in this 
paper. 

2. THE SEARCH FOR AN EQUIVALENT 
GAUGE-INVARIANT LAGRANGIAN 

The Euler-Lagrange expressions, written out in full, are 

Ei Ira - r i  1-i,J; h A [3 - -  l ' i , j ;h , k  4fl  l ' i , j ; h k ~  (6) 
c t l , ~ t~ ) - - - t - Ja - - z . ~a  f lx ' lh , j  ~t~a ]3 .g'lh,kj'-T L~a ,~hk , j  

where a comma denotes partial differentiation, L~ denotes 3L/OA~, L~;= 
3L/3AT.j, and L hk= OL/3ghk. 

Differentiating (6) with respect to gakd, we obtain that L~ j;ak is a gauge- 
invariant tensorial density. By the replacement theorem (Horndeski, 1981) 

Lij;hk(grs', Aft ; AL), = L~J:hk(g,s; 0 ; -~Frs)~ " (7) 
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If  L~ J;hk denotes the left-hand side of (7) and Li~j;hk(g; 0; - �89  denotes 
the right-hand side, then we deduce from (7) 

i , j  i , j  . (L,~ - L ~  (g, O; --�89 0 

i , j  i , j  . , a and so L~ - L ~  (g, 0, - �89  is a tensorial density that depends only on A i 
and Ae. ,,j. Such tensorial densities are known (Calvo et al., to appear), and 
SO 

L ~ j -  L ~J ( g ; 0; - �89 F ) - "~ ~ijh~ ~ e • .~ .iihl, ~ e ~ r - - , ~  ~h,k"-,~,m,~ ~h~k (8) 

a a __ 1 a Computing at A i = 0, Aid-  - ~F~, we obtain from (8) that 0 = d~eYhkFPhk. 
Then d ~  = 0 and we have 

i,j i , j  . . 1 r~', * i jhk- -  f l - -  Y 
L~ - L ~  (g,  O, - ~ r )  =a~pre  A h . / l  k (9) 

We will prove that L~; is skew-symmetric in i, j. First we differentiate (9) 
with respect to A#,k and we obtain 

L i , j ; h , k  ! [ r i , j ; h , k [ ~ ,  # - 2 t ~  # t~, 0 ; - � 8 9 1 8 9  

g i , j ; h , k  Then , ~  p is skew-symmetric in h, k. From commutativity of partial 
derivatives~ it follows that it is skew-symmetric in i, j ,  too. Then 

1-i,j A_ l"J,i'~ ;h,k 

and so L~J+L~  ~ does not depend of A#,k. Let IT~=Li~J+L~ ~, i.e., H ~ =  
H ~ ( g ;  A~) .  From (9) we have 

= H~(g, .~ O) =a~ 

where a~ are real numbers. But then 

L i , J  1 e r i , j  f j ,  ia - -  1 ~ g i j  a = ~ ( L a  - - ~ a ) - t ' i a a  

and so 

Li J.hk l ~,i,j;hk ,j,i,hk,--t , , fg  g~ghk 

- �88 ~ / g  (gihgj~ + g~gjh) 

= Lh~(g; 0; -- �89 F);~J + ~a~ x / g  (g~ghk _ glhgjk _ gikg~h) 

c -  f l -  ij hk . . . . . .  =Lh~(g; 0; - � 8 9  + [a# .,,/g A~,~(g g _g,hgj~ g,~gjh)];,fl 

Then 

L h~ = Lhk(g ; 0 ; -- �89 F )  + a# x f g  A~s(grSg hk - grhg~k _ gr~g~h) 

+ Thk(go-; A~)  
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We deduce that 

Thk(gu ; A~/)  + a# x/  g A L ( g r S  g hk - grh gsk  __ grk g~h) 

is a tensorial density. Hence, for a change of coordinates ~ =  2;(x J), 

hk l m . l a T ( B i B j g t , , , , A i A i ) + a t ~ x / ~  r ~ h k p # p # BA,A,,,A,A~ (B,'~Ap + B,B~Ap,q) 
• (gZmgij _ g,igmj __ gOgmi) 

h k uv . 
= B A . & , ( T  ( g l m ,  A ~ )  

A # . . . . . . . .  g,Og~.)) +a# x/g ~.,(g g - g  g - (10) 

where B~ = Oxt/OYc ~, A~m = OYc~/Ox ~, BP~ = t32xp/02 ~ aft ~, and B = det(B~). 
a a Differentiating (10) with respect to B~,c and evaluating at Bb--'~b, we 

have 

a# ~ A #a (g bcg hk -- gbh g~k _ gbk gCh) = 0 

Contracting with gbcghk, we find 

a# w/g A f f ( 1 6 - 4 - 4 )  =0,  or a # v / g A ~ = O  (11) 

and finally, differentiating (11) with respect to A~-, we obtain a~ =0.  Then 

L~ j =  -L~  ~ (12) 

Let 

Then, by (12) 

- -  ~ ct P - P(gij, F~) = L (g  o; 0; -~Fu)I ~ 

3P l i j  l l~ '~__Di j__  (13) -~L~  (g; 0; - ~ - j - - ~  
OFF 

The last identity implies that p~;hk is gauge invariant. Let us consider, 
for a ~ G (the Lie group of the principal fiber bundle) 

Phk(g o ; Ad~(a-  1)F~) - Phk(gij ; F~) (14) 

Differentiating (14) with respect to F~, we obtain 

phk~O" Ad~(a- t )  _ ph~i: = 0 

because of the gauge invariance of  phk:O. Then 

Phk(go.; Ad~(a-')F~)--Phk(g,h; F ~ ) = e ( a )  x / g  g hk (15) 

Since the right-hand side of  (15) does not depend on F~, we evaluate 
at F~ = 0 to obtain c(a)= 0. Then phk is gauge invariant. 
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Now, from (9) we deduce 

L - P = H + K  

where 

H= d~Tc~J~A~jA~ A{ , K= K(go. ; A~) 
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(16) 

From Theorem 1 in L6pez et al. (1989) we know that P can be written 
as  

P=L~ +H1 (17) 

where L1 is gauge invariant and H~ =HI(A~;A~,j). But then 

L=L1 +H+H1 +K=L1 +H2+K 

It is easy to see that E~(H2)(0;-�89 (Calvo et al., to appear). The 
gauge invariance of E~(LI) follows from the gauge invariance of L1. Since 
the same is true for E~(L), then E~(H2 + K) is gauge invariant. Then, since 
K~(go.; 0)= 0 (Noriega and Schifini, 1985), we have 

E~(H2+K)=E~(H2+K)(gu;O; ~ ~-~Fo. ) 

~ 0  i , + K~(g~j, O) = 0 

Then L~ is the Lagrangian we were looking for. We have proved: 

Theorem 1. If L=L(g~j; A~;A~j) is a scalar density such that E~(L) is 
gauge invariant, then there exists a gauge-invariant scalar density L~ such 
that El(L) = E ~ ( L O .  

3. THE U N I Q U E N E S S  OF THE YANG-MILLS EQUATIONS 

We turn now to the problem of defining the field equations for a 
Lagrangian �9 L~ (gij, Fo). One could consider the complete set of Yang-Mills 
equations as 

BapF~,=O (18) 

�9 F~iJl j = 0 (19) 

where *F~=g-~/2eOhkFgk. For L1, these could be generalized to 

Ei(L1) =0 (20) 

�9 L,~b=0 (21) 

Now, in the deduction in L6pez et al. (1989) we need L~ k and E~(L1) 
to be gauge-invariant tensorial densities. Here this is true because L~ is a 
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gauge-invariant scalar density. Then (20) and (21) are (1) and (19) following 
the proof in L6pez et al. (1989). We deduce: 

Theorem 2. If E~(L) is gauge invariant for a scalar density L = 
L(gu; A~; Ai~/), then the set of equations E~(L)=0 and *L~Jlj.=O implies 
B~FaiJlj= 0 (Yang-Mills equations) and the identity B~t~ *FaUlj= 0. 
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